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1. INTRODUCTION

The study of vortex flows is of critical significance and interest to the
hydrodynamician, both because of the varied and direct applications to
numerous engineering problems (to name a few: intake flows; tornadoes;
wing and propeller theory; vortex shedding from bluff bodies; three-
dimensional (horseshoe) vortices around bridge piers of other cylindrical
structures or buildings, immersed in boundary layers; other vortices
associated with boundary layer flows of various kinds), and because of the
attractive and intriguing nature of the flow patterns that result. These
flows are characterized generally by their extreme unsteadiness which,
coupled with a strong sensitivity to external disturbances, poses a challen-
ge as yet not fully resolved for experimental measurements and theoreti-
cal analyses. As a result, available data and theory are inadequate in most
instances.

Given the contributions of Prof. Dominguez to hydraulic engineering
education and research, basic and applied, the topic of vortex flows seems
rather appropriate for this work. Specifically, the problem of tip vortex
roll-up for an elliptically-loaded wing will be examined, reviewing availa-
ble theories and experimental data, with particular reference to measure-
ments recently carried out at the St. Anthony Falls Hydraulic Laboratory
and reported in detail in Quadrelli [23]. The emphasis herein will be on
the review of this most fascinating phenomenon.
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Wing-tip vortices are characterized by relative spatial stationarity,
which allows for the formulation of simplified flow models and, perhaps
even more importantly, permits the measurement of vortex core veloci-
ties utilizing the non-intrusive technique of Laser Doppler Velocimetry.
Thus, this problem affords the possibility of improving our understan-
ding of vortex flow dynamics, and has been chosen for this reason for the
work reported herein and in the above-mentioned reference. For a gene-
ral theory, the reader is referred to the treatises of Von Mises [19] or
Milne-Thomson [18]. References to these two works will be freely made to
make the presentation as concise as possible, but a review of the Rankine
vortex and of Prandtl’s tip vortex analysis is given for ease of reference
and discussion.

Historically, studies of the tip-vortex roll-up process which characteri-
zes the flow around all finite three-dimensional lifting surfaces can bee
traced back to the beginning of this century. Many attempts, theoretical
and experimental, have been made to explain the mechanics of the
process but, although several useful models have been put forth, a com-
plete understanding of the problem is yet to be achieved. The roll-up can
be explain, qualitatively, either as a crossflow due to the pressure diffe-
rence between the two sides of the lifting surface or, alternately, in terms
of the vortex sheet that must be obtained of necessity behind any such
surface. The vortex sheet, composed of an infinite number of vortex
lines, is shed from the lifting surface, and it is the sum of the contributions
of the velocity fields induced by these lines that leads to the roll-up and to
the appearance of the tip vortices.

The known tip-vortex models can be classified chronologically into
four generations [28] to give an overall view of their historical develop-
ment:

1) semi-two dimensional inviscid theory (Prandtl [7, 18]; Betz [5]; 1920’s

and 30%);

2) Rankine model combined with experimental results (McCormick [17];

1950’s and 60’s);

3) viscous models with axial core flows (Batchelor [4]; Moore and Saff-

man [20]; 1960’s and 70’s);

4) models based on numerical studies (1980’s ?).

I1. THE RANKINE VORTEX

The solution of the Navier-Stokes and continuity equations for steady,
incompressible circular flow having only a tangential velocity component
(ve) is of the following form:
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ve = Cir + Cofr

where C; and C; are arbitrary constants. The Rankine vortex model
divides the flow into two regions, in each of which one of the above
constants is zero. In the inner region C; = 0 and a forced or rotational
-vortex is present. The rotation there is equivalent to that of a rigid body.
This region extends from r = 0 to r = r. where r. is the radius of the
rotational core. Beyond that, C; = 0 which represents a free or irrotatio-
nal vortex.

Let us determine the expressions for the velocities and pressures in
these regions by first considering a vertical-axis free-surface vortex.

For the forced vortex, the tangential velocity is given by:

ve = Qr (11.1)
where () is the angular velocity of the vortex, a constant for rigid-body

rotation. One can relate {2 to the circulation of the vortex by applying the
definition of circulation at the coreradius:

11
r= .[ A rdd = r’ Q2 do = 201Ir? (11.2)
0 0
We have then
_ TIr
=Bz T R

The forced-vortex water-depth differential can be obtained by ap-
plying Euler’s equation (or Bernoulli’s equation modified through addi-
tion of the potential of the centrifugal forces) which gives:

2 2
h-h. = Q_r .
55 (11.4)
where h, is the water depth at the center of the vortex. If we evaluate this
expression at the coreradius, using (I1.3) for (:

hy = h + —L°
r = N W (IL5)
For the free vortex we have instead, using (11.2):
-G _rT
Vo . ST (11.6)

and from Bernoulli’s equation, evaluated at the coreradius, we get:
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hr = hy - —L° ‘ 117
r = -_— .

0 8H2grf (I.7)
where hg is the water depth atinfinity. Equating (I1.5) and (I1.7), we getan
expression for ho—h,: '

2 .
hg — h, = —L— (11.8)
411%gr2
If a free surface is not present, h must be set equal to z + p/y. For
z = constant or for air flows, letting po = pressure at infinity and
pP. = pressure at the center of the vortex, one gets:

I
Po— pc = p [ oTir, ] (IL.9)

If the minimum pressure in the vortex core is equal to the vapor
pressure (p,), we can introduce the cavitation index:

0 = —~Cpun = T2—B= (11.10)
—2‘ pU02
Thus, we can write:
2
— r
o=2 [_—QHUOrC] _ (II.11)

Note that Rankine’s model does not permit the determination of the
core radius by itself since the pressure at the vortex core is also unknown.
Thus, it is used as a framework for other, more complete models.

I11. PRANDTL'S MODEL

The basic assumption of Prandtl’s-inviscid tip-vortex model is that the
kinetic energy per unit length of the vortex system (consisting of the two
vortices rolled up on each side of the wing) equals the induced drag of the
wing [7, 17, 18]. In the other words, it is assumed that the work done in
moving the wing against the induced drag is used entirely to increase the
kinetic energy of the vortices being shed. In reeality, this work is partially
dissipated due to friction. Thus, Prandtl’s model should overestimate the
energy of the vortices. Actually, estimates of the vortex core radius
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e

(defined as the radius where the maximum tangential velocity occurs)
obtained using Prandtl’s model are an order of magnitude larger than
experimentally determined values [17, 23]. The magnitude of this discre-
pancy sheds doubts on the validity of a completelly rolled-up vortex sheet
as representative of the actual vortex system. The measurements show
that the vortex core circulation (calculated at the radius of maximum
tangential velocity) is much less than the circulation at the wing midspan,
as assumed in Prandtl’s calculations (see below). Furthermore, the veloci-
ty distribution outside the radius of maximum tangential velocity does not
exhibit the 1/r dependence of the model, except possibly at downstream
distances an order of magnitude larger than the wing chordlength.
Pradtl’s model is still of interest, however, as a starting point for an
analysis of the flow, and a concise review of it is given in this section.

Prandtl adopted the Rankine vortex for his calculations. Thus, the
kinetic energy of the vortices can be divided into two components, one
being the energy of the cores (Kc), and the other, the energy of the outer
or irrotational flow (Ko). Thus, we have: | :

Ki=Kc+ Ko=Di - (I11.1)

where Di is the induced drag and Ki the total kinetic energy per unit
length of the vortices.

The flow is studied in a plane, perpendicular to the free-stream direc-
tion and downstream of the wing, which has become known as the Trefftz
Plane (see Fig. I111.1). Neglecting the velocity components normal to this
plane, and using (I1.3) for the tangential velocity, the kinetic energy per
unit length in the two vortex cores is given simply by the following integral
taken around both cores:

211 9 _ pr2
Kc=9- ”' v2ds = pJ’ .[0 vérdedr = B (11L2)

To calculate the kinetic energy of the irrotational flow, one can use a
line-integral form in terms of the stream function ¢ [18, pg. 78; also 4, Pg.
529):

1 =

Ko = 5p /e T dr (I11.3)

> >, 2 -
The vectors are defined by: 4 = ul + vj and dr = dx] + dy]. For the
two-vortex system, the integration is performed around a curve that
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Fig. I11.1. The Trefftz plane.
1

encompasses the two vortices (which are removed from the region of
integration by means of a cut). The integral around the external circle
goes to zero as r — ©, On the boundaries of the vortex cores, one has

r =re, \"' = \l"c: Vo = I-‘/QIIrc
and therefore, we end up with:
Ko=2- —é— oW . J o (T/2lr)redd = pbs T (111.4)

To determine {., we must first determine the location of the vortex
cores. The point vortices or vortex singularities are located at +b'/2. The
distance b’ can be related to the wing span b as follows. The impulse of the
pair of vortices for a length UyAt is pI'b’UpAt [18, pg. 209] and the lift
force, which is the time derivative of the impulse, is then given by

L= onrobl = Lob, . (IIIB)
where I’y and Ly are the circulation and the lift per unit length, respective-

ly, and midspan. The overall and midspan sectional lift coefficients are
defined by:
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' L Lo
CL=T—"%- (L6) a,= 17—
; oUo™S ( ) | ; oUg%e, (I11.7)

where S is the area of the wing (= bc,,, where ¢y, is the average chord) and
Co is the midspan chord. Dividing (I11.6) by (II1.7) and using the relation
between L and L, one gets:

b_C cuw __C b 1 1118
b q Co G c AR (ITL.8)

0 0

where AR = b/c,, is the wing aspect ratio.

To determine the value of the stream function at the coreradius, it
must be noticed that since the streamlines are displaced due to the mutual
influence of both vortices, the cores’ centers do not coincide with the
locations of the point vortices. Let the complex potential be ® = ¢ + iy,
where ¢ is the velocity potential. If we define the complex number Z = x
+ iy, the complex potential for the system of two vortices is given by:

If we substitute x + iy for Z in the last expression and take the imaginary
part, we will get the equation for the stream function outside the cores:

T (x + b/2)2 + y2
b= n [ e (I11.9)

(x + b'/2)? + y2

For { = \s., we can write: x - bR + 2

= exp (414 /T) = k (const.)

We can rearrange this expression to end up with:

¢2 2
[x+—i%+t)L] 4 H%t)%—l] (I11.10)

which is of the form (x — x¢)? + (y — yo)? = r2, the equation of a circle of
radiusr. and centered at (xo, yo). In our case, we have xg = *a/2and yo = 0
and, as one can see from (111.10), r2 = (2/2)% — (b"/2)* so that we get: a/2 =
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+V[(b'/2)2 + r2]. Using this expression, we can rewrite the equations of
the circles so that we end up with:

(x = b'/2)2 +y2 = 2x{V[(b'/2)? + 2] + b'/2} (111.11)

Substituting (111.11) into (I111.9), we evaluate ., which can now be
combined with (I11.4) to yield Ko: :

2 [ Vb2 + 12 + b
Ko = L= pr In [ VI®72)? + ] 2] (111.12)

VI(b'/2)% + 13 - b'/2
Combining (111.2) and (111.12), we get the total kinetic energy per unit
length:

. 2 VI(b'/2)2 + 2] + b'/2 '
Ki = _P e
T e [1 e [ VIb'12)? + 12 = b'/2 ” W

We must now equate Ki to the induced drag, Di, given by

Di = ‘2_ pUy% CpiS = ? pUo? Cpib?(cm/b) = + PUOZCD.bZ/AR

where Cp; is the induced drag coefficient. Noting that ¢;, = 2I'¢/Uqcy
~ (obtained by substituting the equality Ly.= pUol’ into the definition for
i ¢,) and using (111.8) to substitute for ¢, we get:

Di = 2pI'§ —2— CD'

b’ 111.14
AR [b ] (I11.14)

Equating (I111.13) and (111.14), one can obtain the sought-after express-

ion for the core radius, but before this is done one must assume that the

. circulation of the vortices (I') is equal to the circulation at the wing’s

- midspan (I'y). After some algebraic manipulation, we arrive at the follow-
ing result, expressed in dimensionless form:

Yo .
2re _ b [[exp[(SHARCDi/CE)(b’/b)2 - 1/2] + 1]2 | s
b b | Lexp[(8TIARCp/CA)(b'/b)2 ~ 1/2] — 1
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Once r. is determined by the above equation, the velocity distribution
can be obtained by using the expressions of section II.

We will now simplify the above result for the case of the elliptically-
loaded wing. The wing used in the experiments reported in [23] was not
only elliptically-loaded, but also elliptic in shape (without twist). One then
has: '

S = Ilbcy/4 = bey, = cpfco = /4 (I11.16)
and from the deﬁﬂitions of the lift coefficients:
Cl./cl() = LC()/L()S = 4L/HbL0 . (11117)

To relate the midspan lift, Lo, to the total lift, L, of the wing, one can
integrate the lift per unit length over the wing. To do this, one must
assume the flow to be two-dimensional (no crossflow). Although this is not
a very accurate assumption for low aspect ratio wings, reasonable results
can still be obtained in this manner as indicated in [19, pg. 273]. For an
elliptically-loaded wing with invariable profile and without twist, the
section lift coefficient ¢, is actually constant over the span, the lift per unit
length being simply proportional to the section chord length, ¢ (see e.g.
[19]). We have then

b/2 b/2
L=2 f c|~—1— pUo%cdx = ¢ pU()2f cdx
0 2 ' 0

Substituting the chord ¢ = oV [1 - (2x/b)?], and Gy, by its definition, one
gets:

L = Lo(IIb/4) = Cp = ¢, (111.18)

as could be predicted from the constancy of ¢, over the wing span. From
(I11.8), using (I11.16) and (111.18), we get:

b'/b = I1/4 (I11.19)
We also have for an elliptically-loaded wing (see e.g.[19, pp. 239-243]):
L = [lpUylb/4 _ (111.20)

Di =Tpl'§/8 o ' (111.21)
Cpi/C? = S/MIb? = 1/IIAR : | (111.22)
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If one substitutes (I11.19) and (I11.22) into (I11.15), a numerical value
for the dimensionless core radius is finally obtained:

9r/b = 0.1731 = r. = 0.08655b (111.23)

In Fig. 1V.2, we have plotted the velocity profile using the above
expression for core radius so that a comparison with Betz’s model can be
made.

IV. THE THEORY OF BETZ.

Betz’s inviscid roll-up model, developed in 1932 [5], remained practically
dormant until the early 1970’s when several researchers (e.g.Rossow [26]
and Jordan [13]) revived it and applied it to more general span loadings.
Although Moore and Saffman [20] had already stated that the Betz model
did not conserve energy, it was considered a useful method to predict the
characteristics of the potential flow field which is of prime importance in
the case of vortices trailing from aircraft wings.

To construct his model, Betz used three well-known conservation
theorems of vortex motion. The parameters conserved, namely circula-
tion, center of gravity of vorticity and second moment of vorticity, are
called integral invariants. These invariants relate the vorticity in the
vortex sheet (assumed to be composed of a continuous vortex distribu-
tion) to that in the ensuing tip vortices. Betz also assumed that the roll-up
of one vortex is independent of the presence of other vortices, which is
not rigorously true. This is equivalent to considering a semi-infinite
vortex sheet.

Betz reasoned that the outer portion of the vortex sheet (near the tip of
the wing) would roll up first forming the center of the tip vortex. Each
. additional segment of the sheet would wrap itself around the preceding
one until the center of the wing was reached. The last piece of the sheet
would correspond to the vortex’s maximum radius. This is depicted in
Fig. 1V.1. :

As can be seen in Fig. IV .1, the vorticity shed from x = b/2 to x = x,
will correspond to the vorticity present in the vortex core from r = 0 to
r = r;. In other words, since circulation equals the flux of vorticity, we
have:

I(x;) = Tu(ry) | (IV.1)
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tip vortex

'y

vortex sheet
Fig. IV.1. Roll-up of vortex sheet

where I, is the circulation of the tip vortex. This defines r; asa function of
xy: ry = f(x). Thus, according to Betz, the circulation of the tip vortex is
nowhere constant as it was in the irrotational region of Prandtl’s model.

We will now determine the distribution of the circulation and the
velocity field by assuming that the integral invariants of the vorticity
distribution, as defined e.g. in [4, pp. 528-529], are also invariant when
applied to the roll-up process depicted in Fig. IV.1. In addition to (IV.1),
we have the following equations expressing the above-mentioned inva-
riants:

xe(x1) = r(x ; f d—r(l)— dx (1IV.2)
1
and
xexy) - x 2 AL0) gy = [ g2 A0 (IV.3)
b2 dx 0 dr

where: x.(x,) = abscissa of center of gravity of vorticity shed from wing tip
to station x; (see Fig. IV.1).

Substituting r = f(x) in the right-hand-side integral in (IV.3) and
equating the integrands (possible because the roll-up is continuous and
(IV.3) is valid for any x,), we obtain: :
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Fig. IV.2. Betz and Prandd tangentdial velocity distributions for the foil used in the experi-
ments at Uy = 40 cm/s and a = 0°[23]

rn = |XC(X1) - X]l (IV4)

For the case of elliptic loading, the circulation of the vortex sheet is
given by:

I'(x) = ToV[1 ~ (2x/b)?] (IV.5)
Substituting this expression into (I1V.4), one obtain; the following
expression for the vortex radius:
_ b I/4—[sin"'(2x,/b))/2 X1
r = -~ IV.6
2 V- @by 2 (Vo)

Givenry, X; must be obtained from the above expression, although this
cannot be done directly. For x; = 0, which corresponds to a completely
rolled-up vortex sheet, we can obtain the maximum radius from (IV.6):

I'max = 1ID/8 - (IV.7)
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Also, from (IV.2), the position of the center of gravity can be calcu-
lated:

x.(0) = IIb/8 (IV.8)

Comparing the above two results, it appears that the two vortices will
touch each other at midspan, a result inconsistent with the assumption of
negligible interaction of the two vortices. The position of the center of
gravity obtained here is the same as that given by Prandtl’s model, equa-
tion (I11.19). '

In conclusion, to obtain the tangential velocity at a radius r,, one must
calculate x, from (IV.6), then I'(x,) using (IV.5), and finally v with (I1.6).
Since no rotational core has been considered, a singularity results atr = 0,
where the velocity becomes infinite. In the potential flow region, the Betz
" method furnishes results close to those obtained by Prandtl as can be seen
in Fig. IV.2 which indicates the results of a comparative calculation made
for the particular foil used in the study reported in [23].

V. THE VISCOUS MODEL OF MOORE AND SAFFMAN

In their 1973 paper, Moore and Saffman [20] advanced a viscous vortex
model which they used as a basis for studying the axial flow in trailing
vortices. They arrived at expressions for core radius, velocities and pres-
sures by analytical means. We will summarize the basis concepts and
results here and use them to derive equations for the core radius and
maximun velocity dependent on Reynolds number and angle of attack.

To obtain initial conditions for the viscous vortex, the authors use a
simplified inviscid model developed by Kaden (1931). In this method (see
e.g. [7]) the wing is replaced by a semi-infinite lifting line with circulation
2I'o(x/b)""2, where x is measured from the wing tip. This is justified on the
grounds that in the initial stages of the roll-up, the two tip vortices do not
interact significantly with each other.

The vortex sheet is then assumed to roll up into a tightly wound spiral
whose turns are close enough together near the center, so that they can be
considered concentric circles for calculation of the fluid velocity. The
variation of the circulation with radius from the center is directly related
to the corresponding variation of the circulation near the tip of the lifting
line. From dimensional considerations one can then write:

[(r) = 2y(Ar)!/2 V.1
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where y=I'¢/Vb and \ is a so-called compression factor (dimensionless)
which, for elliptic loading, the authors show it is equal to 1.5 if one uses
Betz’s assumption of conservation of angular momentum, and to 1.65 if
conservation of energy during roll-up is assumed. Using (I1.6) for ve, the
authors derive an expression (already obtained by Kaden in a different
manner) for the variation with time of the radial coordinate of one of the
vortex lines that constitute the spiral. The resulting equation shows that
the rolled-up portion of the spiral has a radius proportional to (yt)*?, a
result that, as the authors point out, follows directly on dimensional
grounds regardless of the actual definition used for the rolled-up spiral
radius.

Now, Moore and Saffman extend the above analysis to other loadings
by substituting the exponent in (V.1) by 1-n, where n = 1/2 for elliptic
loading. The radius of the spiral results proportional to (yt)"'"*".

Using next the arguments that total head must be conserved between
turns of the spiral, and that there must be a balance between radial
pressure gradient and centrifugal force, estimates for pressure and axial
velocity for r — 0 are obtained, to be used in the viscous model as limiting
conditions to match solutions.

Assuming that viscous effects are confined to an inner region of the
flow, the viscous core, for which dimensional considerations indicate a
radius of order (vt)'’?, the authors use the boundary layer approxima-
tions to study the coreflow. The boundary conditions imposed are as
follows:

1)ve = 0 and v, (axial velocity) is finite at r = 0;

2)vg,v, and p should match the limiting form, for r — 0, of the inviscid

solution as r and the boundary-layer variable r/(v))% > o0;

3)ve and v, are also given by the inviscid expressions for t = 0 (initial
conditions).

The calculation is carried out neglecting the detailed spiral structure of
the inviscid vortex and replacing it with a smoothed out velocity distribu-
tion, a valid procedure on account of viscous diffusion in the narrow
spiral turns. Since the distance between turns in the inviscid vortex can be
estimated from the equation of the spiral as being OTIr™* 2/[(n+ 1)yt], this
is small compared to (vt)"/? if one has r «(yv!/??2)V/(n+2-

The authors divide then the vortex into three regions:

I) a viscous core with radius = (vt)?;

1I) a tightly wound spiral region (distance between turns much less
than the viscous core radius) with radius =~ (yv!2/2)l0+2) >, 2,
111) an inviscid spiral with r = (yt)/®**D,
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Since region II effectively contains region I, the calculations would
thus be valid for region I and a portion of region II very close to the
viscous core. ,

The similarity variable n = ~r%/4vt is used to solve the boundary-layer-
equations. The resulting tangential velocity distribution is differentiated
with respect to radius to obtain the radius of maximum velocity, taken by
most researchers as a measure of the vortex core radius.(in an obvious
analogy to the Rankine vortex). This is effectivelly the radius of region I
as indicated above. For the case of elliptic loading, we arrive at:

ro = 2.92(wt)"2 = 2.92co(z/c)"? Ry~ "2 (V.2)

The last equality above was obtained by using z = Ugt, which has been
considered valid throughout this analysis. Notice that this result shows
that the core radius grows downstream of the wing. If Betz’ [5] assump-
tion of conservation of angular momentum is used, one can show that the
roll-up is complete and that the vortex no longer grows when (yt)?”® ~ b/3
(for elliptic loading). Note that for (V.2) to be valid r, must remain much
smaller than the radius of the inviscid spiral.

An expression for the maximum velocity can be obtained by substitu-
ting (V.2) into the velocity distribution. This results in: '

0.5 -
Vo = 284 b Uola—00) | (V.3)
(VZ/U()) ' (1+4b/kC0)

If we assume that after roll-up is completed, the vortex no longer

grows, we can give an order-of-magnitude estimate of the time for this to

occur (and the distance if we admit z = Ugt) from the expression
2/3

(yt)*® = b/3. Substituting the expression for vy, we get:

t = (1/3)*%b2/T, (V.4)
and

z = (1/3)¥%Ub*T, : (V.5)

Substituting (V.5) into (V.2) (assuming still that r. « b/3, as can be easily
checked) we get:

_ 1.28b '[COUO ]"2 (V.6)
Ry Lo

C

We can now replace I'y by its expression for elliptic loading [19] to get:
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112
. 0.905 bcg(1+TTAR/K) V.7
rc -~ W— .

It is interesting to note that the dimensionless coefficient I'y/coUy
appears in the expression for r.’ equation (V.6). This parameter is one of
the II-numbers obtained in a dimensional analysis of the problem at hand
(along with the Reynolds number) and it relates axial and tangential
discharges (see also [10])

The final expression (V.7) indicates that the core radius at complete
roll-up is inversely proportional to the square root of the angle of attack.
This is surprising since McCormick {17] arrived at an opposite result and
the experiments also indicate that the core radius increases with angle of
attack. We must bear in mind that such a comparison may not be comple-
tely valid since Moore and Saffman have not considered the effect to the
velocity defect due to the boundary layer on the wing in the core radius
calculation (although they later consider it when they calculate the axial
velocity). This effect is implicit in McCormick’s model which we will
describe in the next section. Also, Moore and Saffman’s model assumes
laminar flow, and their results may not be valid except at small Reynolds
numbers.

a—0g

V1. THE SEMI-EMPIRICAL ANALYSIS OF McCoRrRMICK

In his 1962 paper, McCormick [17] presented what he called a semi-
empirical analysis of the rolling-up of the vortex sheet. It is semi-
empirical since the equations which are derived depend on certain cons-
tants that can be evaluated, as McCormick did, only experimentally.
Although McCormick and other researches seem to have been able to
obtain a good fit for their experimental points using his method, others
have obtained contradictory results (e.g. {30]). Only time and more re-
search can settle this controversy.

The most controversial of McCormick’s assumptions is that the vortex
core diameter is equal to the thickness of the boundary layer on the wing’s
pressure side. In other words, it will depend on the Reynolds number.
With this assumption, it becomes necessary to establish where and how
the boundary-layer thickness is calculated. McCormick assumed that the
flow over the pressure side of the wing is diverted through a constant
angle and leaves the wing at its tip (for the case of an elliptic wing). This
can be visualized in Fig. VL.1.

The boundary-layer thickness is assumed to be given by:

S = k€/(Re)" (VI.1)
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Fig. VL.1. Flow over lower (pressure) side of elliptic wing

where k and r are constants to be determined empirically and R, = V,€/v
is the Reynolds number at the tip based on the relevant parameters.
Introducing the wing span b and the Reynolds number Ry = Vco/vbased |
on maximum chord and on a reference velocity V (not necessarily the
free-stream velocity), one obtains:

s 1 k(£/b)
b Ro [[ V., ¢ ]r] (V1.2)
V. ¢ .
From Fig. VI.1. one has the following relations:
€ = /2 cosg; V. = V/cose; cosp = V1 + (wa/V)? (VL.3)

If we set x/(b/2)=£ (dimensionless), we can write (for an elliptic wing with
invariable profile without twist) c= co\/_(l —£%)andT = I'O\/Zl —£?). Since
we are very close to the wing tip, we can introduce the following approxi-
mation: '
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l—¢t=€e>1 —£2=(1-§1+8) = €(2—¢€) ~ 2

From the geometry (see Fig. VI.1) and substituting for c, one has:
tang = €;b/c = W?el)b/Qco = V(2¢)) = 2cotang/b = 2Cow,/Vb
where ) = 1 — &1 & = x1/(b/2). Now, the aspect ratio is given by:
AR = blc,, = b¥S = b*/(Tlbc/4) = 4b/Tlcy 5> co/b = 4/TIAR
Combining the above two results:

V(1 - &) = 24/[IIAR)W,/V (V1.4)

Using all of the above results, (V1.2) can be rewritten as

5 Kk 4 1.65 W, 0.65 1 Wa 19 0.15
F=ROO-35[HAR] [v ] [ +[v]] (V15)

In this equation, the value of r = 0.35, which McCormick obtained
using his experimental results (as explained later), has been used.

We must now evaluate w,/V. By using dimensional reasoning, McCor-
mick proposed the following expression (reproduced here for the specific
case of elliptic loading):

w,/V = f(T/cV) = [KT/cV]™? = [K[o/coV]™? (VL6)

where K and n are constants to be experimentally determined (n/2 is used
instead of n merely for convenience). It is interesting to observe that the
above expression, as noted by Kuiper [14], produces rather large values
for w, (an order of magnitude larger than V as sample calculations show).
We now introduce the asumption 8 = 2r. and make use of the relations

cln = 2F0/COV y CL = (!'dCL/d(!’,

(where a’ = a — ag = effective angle of attack). Using the values obtained
experimentally by McCormick for k, K and n:
k=031, K=537n=16

we get finally an expression for the core radius (note that the angle of
attack should be taken in radians):

0.15

r = ———"10105355 [H?XR 165 [26.85a'——32} ]0-52[1 + [26.850 ‘:i(;% ]"6]

(VL.7)
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The exponent r was obtained in the following manner. First, curves of
o (cavitation number) versus Reynolds number were obtained ex-
perimentally. Then, the assumptiono = —Cp . (Cp = minimun press-

ure coefficient) was made. Now, Cp  can be related to the tangential
velocity at the edge of the vortex core (wg) by first writing a Bernoulli
equation between a point in the free stream and a point on the edge of the
vortex core where it is assumed that q = U2 + w3, that is, that any
perturbation to the free-stream velocity in much smaller than wy itself.

Denoting by P, the pressure at that point, this result in:
P, — Py = —pwo?/2 - (VL8)

To relate P, to the pressure at the center of the core (P,), the Euler
equation can be used to yield:

P, = P. + pwo?/2 (VL.9)

If we combine (VI.8) and (V1.9) and divide the expression for P, — P,
by pUo?/2, we finally get:
o=—Cp_ = (Py— PL)/— pUo? = 2(Wo/Uy)? (VI.10)
In the above derivation a Rankine vortex model has been used, which is
questionable since the calculation is applied in a region very close to the
wing tip.
At this point, wo can be related to &, which is the non-dimensional

abscissa of the edge of the vortex core, by using the Biot-Savart law for
calculation of the induced velocity (actually upwash):

! dr/dg’

—lmdé (VL.11)

wo = w(ko) = J'

For the elliptically-ldaded wing, this result in:

Lo o
= -1 VI.1
"7 Th [ Vg - 1) ] - B

Once wy is written in terms of &, o can be plotted against £ and since &,
= 1 + 8/b (considering that the center of the vortex core is located right
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above the wing tip), one can obtain the variation of 8/b with Ry, and the
exponentr.

VII. THE COMPLEXITIES AND PITFALLS OF EXPERIMENTAL
MEASUREMENTS OF VORTEX-CORE VELOCITIES AND DIMENSIONS

VIL.1 Laser Doppler Velocimetry

Laser doppler velocimetry or anemometry (LDV or LDA) is one of the
most effective methods for making velocity measurements in fluids. Its
principal advantage is that it is a non-intrusive technique. In other words,
it does not introduce any flow-altering obstruction into the fluid. This is
of particular importance in vortex flow studies, not only because the scale
of the phenomena of interest is generally small, but also because these
flows are characterized by a strong sensivity to external disturbances.

The method consists in splitting into two the beam emitted from a laser
and then focusing these two beams into a small ellipsoidal region called
the probe volume. The light scattered from a particle that moves with the
fluid and crosses this volume is picked up by a photo-detector. This
instrument senses the doppler-shifted frequency difference between the
two beams which strike the particle. The.doppler shift exists due to the
difference in the direction of the two beams.

Another way of understanding this is to consider the so-called fringe
model. This model takes into account the fact that the two beams mutually
interfere with each other and create a pattern of alternate light and dark
fringes in the probe volume (see Fig. VII.1). When a particle crosses these
fringes, it is alternately illuminated and obscured, thus emitting a series of
light pulses whose frequency the photo-detector picks up. As can be
inferred, this frequency shall be directly proportional to the velocity of
the particle. The size of the probe volume is determined by the optics and
the wavelength of the laser light.

‘To decrease the size of the probe volume (and thus increase the
resolution), a beam expander can be placed between the beam splitter and
the focusing lens. This component increases the diameter of the beams, so
that after being focused by the lens, their diameter at the crossing point is
actually reduced as equation (VII.1) below shows.

The dimensions of the probe volume must be determined to define the
resolution of the LDV system. Initially, one must determine the diameter
of the beams at their intersection. Since these beams have a Gaussian
intensity distribution, their diameters are defined by means of the follo-
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Fig. V11.1 Probe volume and fringe pattern

wing convention: the diameter extends out to the region where the
intensity has dropped to €2 of the maximum (=13.5%). One must also
consider the refraction due to the glass window and the effect of the beam
expander, which increases the beam diameter. Taking all this into ac-
count, one ends up with the following expression for the beam diameter
at the crossing point (focus of lens) [2,25]:

d.—2 = 4fA/TI(D, — 2) E (VIL.1)
and:
f=T+dg+Y =f+ (Y -Y) (VIL.2)

where (see Fig. VII.2):

D.-: = diameter of the beam at exit from laser;
E = beam expander expansion ratio;

A3 = wavelength of laser light in water;

t' = combined focal length after refraction;
f = lens focal length.

To determine f’, one must first calculate the angles k;, k2 and 3 as
indicated in Fig. VIL.2. This is simple since we know the focal length of
the lens (f) and the beam spacing (d), both furnished by the lens manufac-
turer, and Snell’s law of refraction. Note that k; is the angle between the
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Fig. VI1.2 Refraction of laser beams due to glass window.

incoming ray and the refracted ray in the glass. Thus, the following
formulas apply:

tank; = d/2f

(VIL3)
m,SiNK; = MoSiNKo = MgSinKs

(VI1.4)

where m;, my and mj3 are the refractive indices of air, glass and water,
respectivelly. The combined focal length ' is given by the following
equation, which follows from (V11.2):

_ tankg | _ _

+ dg [1 tanx3] + (I —dy [1
We now have all the necessary elements to calculate de-. and the
dimensions of the probe volume. Also note that, sincef’ =1+ dg + Y, the
position of the probe volume (given by Y’) can also be obtained. The

length, width and height of the ellipsoidal probe volume are given,
respectively, by [2,25]:

tank
tanks

f=f

tank; :I

B (VIL5)

I, = (de-2)/sinks (VIL.6)
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dum (_,)/cos.q (VIL.7)
hy, = de- (VIL.8)

The length of the probe volume is the most important for measure-
ment of vortex-core velocities and dimensions, to ensure the necessary
resolution. As one can see, I, can be greatly decreased if a beam expander
and a lens with small focal length are used. This was necessary for the
study reported in [23]. By using a beam expander and a 120 mm focusing
lens, the length of the probe volume was reduced from I,,, = 8.7 mm (with
2 350.6 mm lens) to I,, = 0.46 mm, while the width (and length) propped
from d,,, = 0.47 mm to d, = 0.07 mm. The vortex core radius in that
particular study had been estimated to be of the order of a few millime-
ters.

VI11.2 Vortex-core Measurements

The emphasis in this section is on measurement techniques and errors.
Velocity measurements reported and discussed fully in [23] are used as
examples. These measurements were carried out in a 30.5 cm wide water
channel at the St. Anthony Falls Hydraulic Laboratory. The model used
was an elliptic planform foil with an aspect ratio of 3 and a NACA
662—415 (a=0.8) cross section. The half span of the foil was 152.4 mm
and the average chord length 50.8 mm. The foil was mounted vertically,
with the tip down, flush on a plexiglass plate placed 37.5 cm above the
channel floor.

The single component LDV system used (TSI 9100-2 laboratory sys-
tem) did not have a Bragg cell [2, 8] for frequency shifting, so that velocity
directions could not be determined; only magnitudes. The system allo-
wed for the measurement of axial and tangential velocity components
(respectively in the flow direction, z, and in the spanwise direction, x; see
Figs. 111.1 and IV.1) and a component at 45° to the last two. Since velocity
directions could not be detected, it was not possible to obtain the velocity
distribution near the vortex core center (where the tangential velocity
becomes zero and changes sign) by measuring only the tangential velocity
component. On the other hand, if one measures the axial velocity and the
45-degree component, the tangential component can be computed from
these two.

Two different methods were then used to obtain the tangential velocity
profiles. In the first one, the tangential velocity was measured directly by
aligning the probe volume fringes with the free-stream velocity. This
procedure was satisfactory when the tangential velocities were relatively
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large (larger than about 10 cm/s) since one must guarantee a minimum
number of particles crossing the probe volume over a certain time inter-
val, for the LDV system to respond. The second method consisted of
measuring the axial velocity (v,) and a component inclined at 45° to the
free stream (v45), and obtaining then the tangential velocity (ve) by decom-
position of these two according to the following expression:

Ve = Iv, — vasV2I (V1L.9)

Since the axial velocity was always greater than the tangential component,
a stronger signal could almost always be obtained in this manner.

A comparison of these two methods is presented in Figs. VIL.3 and
VI1.4, which show tangential velocity plots measured for a foil angle of
attack of 15°and a Reynolds number Ry = 47000, in a plane perpendicu-
lar to the flow direction at z=203.2 mm (2 average chord lengths). All
velocity plots begin at y=0 mm. This value is not measured in the coordi-
nate system of the foil, but is simply the point where the traverse of the
vortex core was begun, a procedure adopted because the exact location of
the vortex core in relation to the foil is difficult to determine. Also note
that all velocities are shown in absolute value. Curvesd have been drawn in
the plots to permit an estimate of the core radius to be made. Since they
were manually drawn they are subject to some subjective error. As an
example, for some of the measured distributions in [23], a difference of
about 15% was observed between curves drawn by different observers.
The error is smaller when tangential velocities are measured directly.

In the range of foil angles of attack from 10 to approximately 15°, the
vortex core could be located visually since minute air bubbles were entrai-
ned into that region. At lower angles of attack and closer to the foil, this
visualization was not possible since not enough bubbles were present in
the core. In these cases, dye was injected into the flow to obtain a rough
estimate of the position of the vortex core, to serve as a reference point for
the measurements. In general, the location of the center could be establis-
hed fairly well once a traverse was completed, despite a small amount of
vortex wandering.

The profiles in Figs. VII.3 and VII.4 illustrate the major advantages
and drawbacks of each of the above-mentioned techniques for tangential
velocity measurements. As expected, the direct tangential velocity measu-
rement (herein referred to as M1) does not furnish accurate results near
the center of the vortex core. Since the direction of the velocity vector
cannot be sensed by the detector, all particle velocities which to into the
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Fig. VIL.3 Tangential velocity using measurement technique M1.

LDV average are computed as being positive, and a larger value is obtai-
ned (different from zero, in particular, at the center). This problem is
eliminated in the second method (M2) since the decomposition permits
the determination of the sign of the velocity vector. Thus, velocities very
close to zero are measured. On the other hand, the scatter of the results is
much greater in M2. Although a mean curve was drawn for that case so
that an estimate of the core radius could be obtained, the error involved in
such an estimate is much larger than for M1. The greater scatter in the
results is most likely due to the fact that the velocity is obtained from two
measurements so that the errors of the two are compounded. This can be
analyzed as follows.

The standard deviations of the velocmes (computed at each point) are
roughly of the same order of magnitude for both the axial and the
45°-component measurements (approximately 5 to 10% of the mean
value). Thus, from (VII 9) we can write (consndermg 0,=~C45):
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Fig. VIL.4. Tangential velocity using measurement technique M2.

08 = 02 + 2042 ~ 3022 > 0y ~ o, V3 (VIIL.10)

Taking (VII.10) into account, the large oscillations near the maximum
velocities in Fig. VIL.4 can be explained. In the case, ¢,~1.4 cm/s so that
0¢~2.4 cm/s, which agrees roughly with the observed differences in that
figure between adjacent points near the maximum velocity. Figure VILS5, :
which is the axial velocity plot corresponding to Fig. VIL.4, shows much
less scatter as was to be expected, since the axial velocity is measured
directly.

The conclusion obtained from the above comparison is that the best
practice is to combine the two techniques in the same measurement, using
M1 in the regions of higher velocity and M2 inside the core region. The
core radius can be estimated with less error with this method, and the
location of the center of the vortex is also accurately obtained. A distance
of 0.25 mm between points was used in [23] near the velocity peaks, with
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0.5 mm being adopted elsewhere. Outside the core region, only a few
points were needed to define the shape of the profile.

It is important to note that this strategy is only applicable if the tangen-
tial velocities exceed a certain minimum value, on the order of 9 to 10 cm/s
here. As mentioned before, lower speeds were difficult to track using M 1.
This presented a problem at lower angles of attack and/or Reynolds
numbers, where M2 had to be used over most of the traverse.

VI11.3 Additional Considerations

Vortex wandering was observed in both the vertical and horizontal pla-
nes, casting some doubt as to the repeatability and validity of the velocity
measurements. An attempt was made to estimate the magnitude of the
oscilations by observing the position of the core (when it was made visible
by naturally entrained air bubbles) with respect to the beam crossing
point. A rough estimate of *1.27 mm for both planes was obtained at
maximum discharge and a=15°. Baker et al [3] accounted for vortex
wandering by supposing it was due mainly to free-stream turbulence.
They estimated an eddy diffusivity from pictures of vortices marked
with dye and incorporated it into a probability density function. This
procedure permitted them to obtain better agreement with their experi-
mental results. This was not attempted for the experiment reported in
[23] since the rather involved calculations did not appear necessary in
light of the results obtained.

The repeatability of the measurements was checked with the following
two techniques. First, a back-and-forth selection of measurement loca-
tions was used so that a check of the precision and hystheresis of the
positioning equipment and the stationarity of the flow could be made.
This was used to acquire the data in Fig. VII1.4. The positioning error was
estimated to be of the order of 0.05 mm. As one can see from the figure,
this error does not affect substantially the definition of the velocity pro-
file. '

The second experiment undertaken to check repeatability was to make
one traverse of the vortex core and repeat it immediately afterwards in
the opposite direction. As Fig. VI11.6 shows, the overlapping of points was
reasonably good, most of them falling on the same curve. Somewhat
larger errors are present in the core, where the variation of the velocity is
larger. This is most likely due to positioning error, but again it has no
serious effect on the velocity profile.

Another question which arose was whether one could traverse the
vortex in the plane of its axis. To investigate this, measurements were
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Fig. VIL.5 Axial velocity distribution corresponding to Fig. VII.4.

carried out at 3 heights, first in a plane containing the assumed (as
visualized) position of the axis, and then in planes 2.5 mm above and
below it. As expected, the central traverse produced the largest velocity
. peaks, but it also appeared to have the smallest core radius of the three.
This has to do with the structure of the vortex core, which is evidently not
circular, and has obvious implications in regard to the definition of the
core “radius”. The measured velocity distributions were not only assyme-
tric as Figs. VI1.3 and VII.4 show, but the overall shape of the vortex core
appeared to be possibly some kind of a Cassini oval. For further analysis
of this point, reference is made to [23].

The core radii were estimated by taking one half of the distance
between tangential velocity peaks. The scatter in the values of the radii
shown in Figs. VIL.3, VII.4 and VIL6 is typical of the results and hig-
‘hlights the complexities of the flow and of the measurements themselves.
In view of the discussion above, these radii might perhaps be more
properly referred to as typical coreradial length scales.
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VIII. FLow VISUALIZATIONS

To give a pictorial idea of the experimental flow conditions, two flow
visualization photographs, Figs. VIII.1 and VIII.2, are presented. Figure
VI111.1 shows surface flow streaklines obtained in a subsonic wind tunnel, -
for the foil pressure side. The technique used was to place rows of dots of
a mixture of oil and titanium dioxide along the foil’s span. These visuali-
zations shawed clearly flow separation and reattachment, and flow rever-
sal zones.

Figure VIIIL.2 shows a flow visualization of the vortex in the water
channel, obtained by injecting dye simultaneously through three holes
near the tip of the foil. The roll-up process is clearly observed, although a
great deal of information is lost when still pictures are used to document
the flow. Certain peculiarities of this technique must be considered when
interpreting the photographs. First of all, there is the question of whether
the dye injection considerably affects the flow. This will depend on the
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Fig. VIIL.1 Pressure side surface flow streaklines (Ry=2.7x10°, a=0")

momentum of the dye upon its emergence from the injection hole.
Ideally, the dye should emerge with negligible velocity from the hole, a
condition which is difficult to establish. Secondly, there is the question of
the speed at which the photographs are taken. Faster shutter speeds
produce finer detail and eliminate blurring, but may provide a false
impression of how the flow is developing. This is especially true for the
roll-up process. In some photos, it appeared that vortex rings were
issuing from each dye hole, with a tangential velocity component much
greater than the axial velocity. Actually, this effect was due to the dye
flowing in spurts from the holes. Sometimes the dye even subdivided
itself into two or more filaments.

It is interesting to note in Fig. VIIL.2 that the dye that locates itself in
the vortex core comes not from the tip, but from a position on the trailing
edge somewhatinward from the tip. This points once more to the comple-
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Fig. VII1.2 Visualization of tip vortexin water for R, = 2.5x10"and a=5". Dye injected from
3 holes on pressure side.

xity of these flows and the difficulties in both theoretical analyses and
experimental studies.

IX. CONCLUDING REMARKS

A review of the problem of tip-vortex roll-up for an elliptically-loaded
wing has been presented, with particular reference to measurements
recently carried out at the St. Anthony Falls Hydraulic Laboratory. The
remarkable complexities of the flow phenomena involved pose challen-
ges as yet not fully resolved for theoretical analyses and/or experimental
investigations. The shortcomings and difficulties of available theories as
examined in this review obviously require for their elucidation com-
prehensive experimental investigations. These, in turn, must take into
account the three-dimensional nature of the flow and, as the analyses of
experimental techniques for measurement of vortex core characteristics
has shown, have difficulties and shortcomings of their own, which must
be carefully considered in the planning of experiments.

A major factor to be considered in such planning is the asymmetry of
the vortex core flow. Actually, the core structure appears to be strongly
three-dimensional, and this may require not only a redefinition of what is
meant by core radius but also a reexamination of available theoretical
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models. The use of two-component (two-color) lasers with frequency
shifting should help resolve some of the measurement difficulties discus-
sed in preceding sections. However, the rather significant axial velocity
reductions in the vortex core coupled with the possible strong three-
dimensional core structure suggested by the present measurements, may
require measurement of all three velocity components to elucidate some
of the questions. In any event, the errors associated with the LDV
measurements themselves (velocity biasing, bubble interference, preci-
sion of associated electronics), probe positioning errors, and errors due to
vortex wandering, should be carefully evaluated in all cases. For vortices
exhibiting strong unsteadiness, as is the case for example of intake vor-
tices, the problems to be resolved for experimental measurement appear
formidable indeed, and will require the use of sophisticated (and likely
onerous) data acquisition schemes, whose development has been made
possible by the technological advances in electronics and computer sys-
tems of the past decade.
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NOMENCLATURE

distance between vortex cores.

mean line pressure distribution of wing section
wing span

distance between point vortices in Prandtl model
wing chord

section lift coefficient

midspan section lift coefficient

average chord

midspan chord _

diameter of LDV focusing lens

diameter of laser beam at crossing point
thickness of glass window

diameter of laser probe volume

focal length of LDV focusing lens

focal length of LDV system after refraction
acceleration of gravity

height of free surface

h at center of vortex

height of laser probe volume

h at radius of vortex core

h at infinity

imaginary unit

x-direction unit vector

y-direction unit vector

slope of section lift curve, constant in Prandtl model
lens-to-window distance in LDV systemn
characteristic length (McCormick)

length of laser probe volume

refractive index of air

refractive index of observation window (glass)
refractive index of test fluid (water)

constant exponent

vortex corepressure

pressure at edge of vortex core

vapor pressure

free-stream pressure

modulus of 2-D velocity vector

radial coordinate, empirical constant (McCormick)
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Cpmin
CDi

Clr C2
D.-:

=Eg

Kc
Ko

Lo
M1

M2

Re

vortex coreradius

specific radial coordinate in Betz model
time

x-component of velocity

y~-component of velocity

velocity vector

axial component of velocity

tangential component of velocity
component of velocity at 45° to free stream
downwash velocity

average spanwise velocity (McCormick)
tangential velocity at edge of tip vortex (McCormick)

wing spanwise coordinate

abscissa of center of gravity of vort1c1ty
abscissa of center of circle, station at edge of tip-vortex
specific spanwise coordinate in Betz model
coordinate perpendicular to wing planform
ordinate of center of circle

wing chordwise coordinate

wing aspect ratio

contour of integration

minimum pressure coefficient

wing induced drag coefficient

wing lift coefficient

arbitrary constants

diameter of laser beam at exit from laser

induced drag

LDV beam expander expansion ratio

constant

kinetic energy of vortex cores

total kinetic energy

kinetic energy of irrotational flow

lift

section lift per unit length at wing midspan

LDV measurement technique in which tangential velocity is mea-
sured directly

LDV measurement technique in Wthh tangential velocity is ob-
tained from the decomposition of two other components
Reynolds number

Reynolds number based on characteristic length £
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m<ge2

R R RRNK

m

Reynolds number based on midspan or root chord
area of wing, area of integration

free-stream velocity '

reference velocity in McCormick’s analysis

velocity along £ direction (McCormick)
window-to-probe volume distance
window-to-probe volume distance after refraction
complex variable

geometric angle of attack

effective angle of attack (a — ayg)

angle of zero lift

maximum circulation coefficient = I'y/Vb (Moore & Saffman)
arbitrarily small number

angular coordinate

angle of incidence of laser beam on observation window
angle of refracted laser beam in window
half-angle of laser beam at probe volume
compression factor (Moore & Saffman)
wavelength of laser light in test fluid (water)
kinematic viscosity

dimensionless spanwise coordinate (McCormick)
density

cavitation number

standard deviation of axial velocity component
standard deviation of tangential velocity component
standard deviation of 45° velocity component
angle between reference velocities (McCormick)
complex potential

circulation

circulation of vortex

circulation at midspan chord

time interval

velocity potential

stream function

value of stream function at vortex coreradius
angular velocity of vortex core
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10.
11.
12.
13.
14.
15.
16.
17.

18.

19.
20.
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